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Abstract

The DNA microstates that regulate transcription include sequence-specific transcription fac-

tors (TFs), coregulatory complexes, nucleosomes, histone modifications, DNA methylation,

and parts of the three-dimensional architecture of genomes, which could create an enor-

mous combinatorial complexity across the genome. However, many proteins and epigenetic

marks are known to colocalize, suggesting that the information content encoded in these

marks can be compressed. It has so far proved difficult to understand this compression in a

systematic and quantitative manner. Here, we show that simple linear models can reliably

predict the data generated by the ENCODE and Roadmap Epigenomics consortia. Further,

we demonstrate that a small number of marks can predict all other marks with high average

correlation across the genome, systematically revealing the substantial information com-

pression that is present in different cell lines. We find that the linear models for activating

marks are typically cell line-independent, while those for silencing marks are predominantly

cell line-specific. Of particular note, a nuclear receptor corepressor, transducin beta-like 1

X-linked receptor 1 (TBLR1), was highly predictive of other marks in two hematopoietic cell

lines. The methodology presented here shows how the potentially vast complexity of TFs,

coregulators, and epigenetic marks at eukaryotic genes is highly redundant and that the

information present can be compressed onto a much smaller subset of marks. These find-

ings could be used to efficiently characterize cell lines and tissues based on a small number

of diagnostic marks and suggest how the DNA microstates, which regulate the expression

of individual genes, can be specified.

Introduction

The decision to transcribe genes relies on DNA sequence information, which is interpreted by

transcription factors (TFs) or other sequence-specific DNA-binding proteins. In eukaryotes,
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TFs interact with a variety of mechanisms that reorganize chromatin structure, remodel nucle-

osomes, recruit coregulators, methylate DNA, and post-transcriptionally modify histones and

regulatory proteins to collectively regulate transcription. These genetic and epigenetic mecha-

nisms “mark” regulatory loci to yield DNA microstates, a term derived from thermodynamics

[1], which essentially considers any particular binding configuration of TFs and histone modi-

fication and DNA methylation patterns etc. that may arise at any time point at the regulatory

loci of a gene of interest (promoter, enhancers, etc.). In previous work, we showed how the

functional relationship between the concentrations of TFs and the level of expression of a

gene, also known as the gene regulation function, can be calculated by determining the rele-

vant microstates and the rates of transition between them [1].

In this study, we focus on the structure of DNA microstates, whose combinatorial complex-

ity is potentially enormous. For example, the histone proteins H2A, H2B, H3, and H4 can be

modified at as many as 160 different sites. If these modifications were merely binary, as in the

case of phosphorylation, this would result in 2160� 1048 potential modification patterns on a

single nucleosome and vastly more when all the other marks are considered. Only a small frac-

tion of these microstates are observed in practice, implying associations between different

marks and high levels of redundancy between them. We pursue several questions: How strong

are these associations? Can most marks be predicted by knowing only a few? Are the rules of

association specific to particular cell lines or do they hold generally across many different cell

lines?

The large-scale data emerging from consortia like ENCODE [2] and the NIH Roadmap

Epigenomics project [3] have provided an opportunity to address these questions. These data

measure a variety of epigenetic and regulatory protein marks over the whole genome at steady

state for many cell lines/types. Rules of association have been sought using Bayesian networks

[4–6], hidden Markov models [7, 8], and other methods [9–11], including some that also

incorporate gene expression data [12–14]. While these approaches have shown utility for the

efficient prediction and imputation of other marks, none of them uses completely linear mod-

els for jointly studying epigenetic marks, TFs, coregulators, and chromatin remodelers. Hence,

the question remains, if the correlation structure for all these marks underlies, in fact, linear

characteristics, which in turn would lead to models that are easy to interpret in a biological

context.

Here, we combine data for epigenetic marks with data for TFs, coregulators, and chromatin

remodelers and avoid discretization to enhance sensitivity. We find that simple linear models

capture strong associations among these marks within a cell line, with a small subset of marks

being able to predict most other marks with high average correlation across the genome,

which means here at protein coding and lincRNA genes. We further show that these linear

models are largely cell line-independent for activating marks and largely cell line-specific for

silencing marks. Our results suggest how cell lines can be characterized by epigenetic and regu-

latory protein marks and improve our understanding of gene regulation.

Results

In this study, we analyzed genome-wide data obtained from the ENCODE and NIH Roadmap

Epigenomics consortia for five cell lines (GM12878, H1, H9, IMR90, and K562). We selected

these five cell lines as GM12878, H1, and K562 are Tier 1 cell lines in the ENCODE consor-

tium, and therefore ChIP-seq data for histone modifications as well as a large number of regu-

latory proteins were available. Furthermore, in the NIH Roadmap Epigenomics Consortium

the largest datasets for histone modifications and DNA methylation data were available for

the cell lines H1, H9, and IMR90. In total, data was available for DNA methylation, DNase
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hypersensitivity, 18 chromatin remodelers, 21 coregulators, 30 histone modifications, and 106

transcription factors in these cell lines (Table A in S1 Dataset). Additionally, in these cell lines,

ChIP-seq data for 14 proteins with unknown or nonexistent regulatory function were avail-

able. This rich dataset allowed us to probe associations between regulatory proteins and many

epigenetic marks. For both protein coding and lincRNA genes in each cell line, we took all

transcripts (with their respective TSSs and TTSs) and considered three regions (see “Materials

and Methods”): +/− 2kbs from the most upstream transcription start site (TSS), +/− 2kbs from

the most downstream transcription termination site (TTS), and the entire gene body between

the most upstream TSS and the most downstream TTS. Whenever we talk about a “gene type”,

we mean either protein coding or lincRNA genes. By “region types” we denote the +/− 2kb

region around TSSs, gene bodies or the +/− 2kb region around TTSs. In the following, we will

refer to a combination of a specific cell line, gene type, and region type, as a “constellation”.

As an example, all TSSs (region type) of protein coding genes (gene type) in K562 would be

termed a constellation. When we focus on a specific gene type and region type, we will call this

a “locus constellation”, so all TSSs of protein coding genes would be termed a locus constella-

tion. We have divided all regions included in this study into either 1 bin or 40 bins. The latter

was applied just to regions around TSSs and is only used for predicting gene expression. We

tabulated the count of tags that fall into each bin (divided by bin size) for each type of mark

(Fig 1A). For DNA methylation data, we also divided these bin counts by the number of

CpGs in the corresponding genomic regions (see “Materials and Methods”). Finally, we set the

top 1% of values to 1, the bottom 1% of values to 0, and scaled the remaining values linearly

between 0 and 1. This results in a table of enrichment values for each mark at each bin (Fig

1B), which we then used for further analysis. We alternatively created enrichment tables using

5%-quantile cutoffs for normalization. We found that downstream results were independent

of the specific normalization method (compare Table B with Table C in S1 Dataset).

Prediction of marks from other marks

To predict the enrichment value of one mark using the other marks, we fitted a linear model to

the data for all marks for a given constellation using the 1-bin resolution data,

marki � bi þ
X

j6¼i

ajmarkj

¼ bi þ a1mark1 þ . . .þ ai� 1marki� 1 þ aiþ1markiþ1 þ . . .þ anmarkn;

Fig 1. Data processing. (A) For each protein coding or lincRNA gene we consider the +/− 2kb region around the outmost TSS (left two

vertical dashed lines), the entire transcript (the “gene body”), and the +/− 2kb region around the outmost TTS (right two vertical dashed lines)

and count the number of tags for each mark that fall into each region. (B) For each constellation we obtain a matrix, where each entry

contains the enrichment of a particular mark at a particular gene (for a given gene region). Here, as an illustrating example an excerpt of the

matrix for the region around TSSs of protein coding genes in K562 is shown.

https://doi.org/10.1371/journal.pone.0186324.g001
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where n is the number of marks, markk is the enrichment of the k-th mark, and

a1, . . ., ai−1, ai+1, . . ., an, bi are constants. We used 10-fold cross-validation (CV) to test the

generalizability of our predictions.

Then, for a given constellation, we evaluated the Pearson correlation coefficient (Pearson’s r)

between the measured and the predicted enrichment values for each mark.

The median Pearson’s r was 0.92 over all marks and all possible constellations (S1 Fig and

Table B in S1 Dataset, p<2.2e-16 each). We conclude that a linear model can predict most

marks with great accuracy. This also holds true for specific constellations. As an example, pre-

dicting enrichments of marks around the TSSs of protein coding genes in K562 cells, resulted

in a median Pearson’s r of 0.94 (Fig 2A and Table B in S1 Dataset). In addition, the predicted

and the measured values usually are very close to each other (Fig 2B–2D).

In particular, the models for the normalized DNA methylation abundance (Fig 2B) enable

us to distinguish between strongly and weakly methylated regions, since most normalized

Fig 2. Prediction of a mark by all other marks. (A) Histogram of Pearson’s r values between measured and predicted values using 10-fold

CV for all marks around the TSSs of protein coding genes in K562 cells. (B,C,D) Scatter plot comparing predicted and measured values

(10-fold CV) for (B) DNA methylation, (C) H3K4me3, and (D) H3K27me3 around the TSSs of protein coding genes in K562 cells. The line “y

= x” is indicated in red for reference. (E) Mark weight distribution in the linear model fitted for CEBPB on 100% of the data around TSSs of

protein coding genes in K562. (F) Barplot of selected mark types for different mark types from the linear models fitted for all marks on 100%

of the data for TSSs of protein coding genes in H1. We considered the four different mark types (chromatin remodelers, coregulators,

epigenetic marks, and transcription factors) and calculated the relative frequency of each mark type (dark blue bars). Then, for each mark

we considered all mark weights of these four types, i.e., without those with an unknown respectively not regulating function. We took a 95%

quantile cutoff over all absolute weights, where we considered the weights for all mark models combined. For each mark type, we

considered those weights in the linear models for each mark of that respective type, whose absolute weight was above the cutoff, grouped

these weights according to the type of the input mark, and plotted the respective relative frequency of each input mark type in the bars of the

same color. The bars, where the predicted mark type and the input mark type are identical, are marked with a red star.

https://doi.org/10.1371/journal.pone.0186324.g002
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DNA methylation levels close to 0.2 or close to 0.95 have the highest frequency and the mini-

mum frequency occurs around 0.6 (S2 Fig). Further, we can even predict patterns of sequence-

specific factors like GATA1, GATA2 or CTCF reasonably well (median Pearson’s r of 0.96,

0.90, and 0.89, respectively, over all constellations for each respective mark). This observation

is remarkable given that we are analyzing only the neighborhood of the mark, yet do not

include any locus-specific DNA sequence information.

Ernst and Kellis [9] evaluate the performance of their models by comparing the enrich-

ment of a mark against the same mark from other cell lines. Towards this aim, they deter-

mine to what degree their models are more accurate than taking a best-performing signal

track for the same mark from another cell line respectively the signal average from all sam-

ples of the considered mark in other cell lines. When following a similar approach by com-

paring our models to both the best correlated mark in the same cell line (Table D in S1

Dataset) and the enrichments of the same mark from other cell lines (Table E in S1 Dataset),

for all marks around TSSs at protein coding genes our models outperform the best-corre-

lated mark enrichment in the same cell line (S3A and S3B Fig). Further, for nearly all marks

our model performs better than using the same mark enrichments in another cell line (S3C

Fig), which holds for all histone modifications (S3D Fig). Similar results can also be observed

for other locus constellations (compare Table B with Table D and Table E in S1 Dataset).

We conclude that our model evaluation agrees well and compares favorably with the funda-

mental observations by Ernst and Kellis [9], although, in contrast to them, we do not incor-

porate information for a specific mark and locus from other cell lines. The complete linear

models for all marks and all constellations fitted on all data can be found in the SI (Table F

in S1 Dataset).

When we assess the weight distribution of the fitted linear models for the individual marks

and constellations from above, we observe a weight value close to 0 for most marks and a large

values for only a few marks (Fig 2E, S4 and S5 Figs). We suggest this reflects few (functional)

interactions among marks, resulting in a sparse interaction network. For instance, in the case

of CEBPB binding around TSSs of protein coding genes in K562, there are only two marks

(out of 131 other marks), that have an absolute weight above 0.3. These are ATF3 and CEBPD,

which are both known to interact directly with CEBPB [15, 16]. We must caution, however,

that higher respectively lower absolute edge weights do not necessarily imply the presence

respectively the lack of a biochemical interaction. For instance, GATA1, which is an important

regulator of erythroid development by regulating large numbers of genes [17], forms a com-

plex with P300 [18] and is well correlated with it in K562 (Table D in S1 Dataset), but the

model fitting assigns large absolute weights to other marks for predicting GATA1 binding to

DNA in K562 cells, which apparently possess a similar or better information content than

P300 in this context (Table D and Table F in S1 Dataset).

Next, we searched for mark types (chromatin remodelers, coregulators, transcription fac-

tors, and epigenetic marks like histone modifications, DNA methylation, and DNase hyper-

sensitivity) with significant overrepresentation among the strong model weights for the target

mark types. Interestingly, in the case of TSSs of protein coding genes in H1, we do see for all

mark types that in the models the identical mark types are overrepresented regarding the rela-

tive frequency of that mark type (red stars in Fig 2F). For epigenetic marks, this observation is

consistent for all other constellations. Conversely, transcription factors are mostly underrepre-

sented for epigenetic marks (S6 and S7 Figs). Taken together, from an information content

point of view our observations suggest that strong links between epigenetic marks appear to

exist. This leads us to hypothesize that histone mark patterns are established in a highly coordi-

nated fashion, e.g. if one particular histone modification is set at a position, a defined and char-

acteristic set of histone modifications will be present or absent.
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Activating mark models are generally applicable and silencing mark

models are cell line-specific

We have shown that our linear models are capable to faithfully recapitulate relationships

between different marks in a particular constellation. We tried to expand on this observation

by asking which of our models generalize across the diverse cell lines in our dataset. For this,

we took for each ordered pair of different cell lines all marks available in both cell lines, fitted a

linear model for each mark and each locus constellation in the first cell line on 100% of the loci

and predicted the measured values in the second cell line (see “Materials and Methods”).

When passing from the intracellular 10-fold CV to the cross-cell line setting, we do see on

average a slight performance decrease for each mark (Fig 3A). The median Pearson’s r was

0.83 over all marks, all ordered pairs of different cell lines, and all locus constellations (Table G

in S1 Dataset, p-value of t-test <2.2e-16 for 3893 of the 3948 Pearson’s r values). This finding

suggests that the majority of marks can be predicted with an acceptable performance by other

marks with rules that hold generally.

There are 19 marks standing out, because their median Pearson’s r fell by more than 0.3

compared to the median Pearson’s r in the above intracellular 10-fold CV setting for each

mark (Fig 3B). 17 of the 19 marks are known to represent repressive marks or marks,

which have been reported to play a role in gene silencing mechanisms: DNA methylation,

H3K9me3, H3K27me3, ATF3 [19], the histone demethylase KDM5B [20] (also known as

JARID1B and PLU1), the histone deacetylase SIRT6 [21], TCF12 [22], USF1 [23, 24], NR2C2
[25–27] (also known as TR4), YY1 [28, 29], FOSL1 [30, 31], SP2 [32, 33], ZBTB33 [34, 35],

ZNF274 [36, 37], EGR1 [38, 39],RXRA [40], and SPI1 [41–43] (also known as PU1). We note

that some of these marks, like YY1 and SPI1, are also known to play a role in gene-activating

mechanisms. The remaining two mark H3K36me3 and POL3 are positively associated with

gene expression.

Most notably though, the prototypic silencing marks (DNA methylation, H3K9me3, and

H3K27me3) are all included in this set. That is particularly interesting for DNA methylation:

In our analysis, it is overall a rather invariable mark between different cell lines (Table E in S1

Dataset) and it can be accurately predicted by other marks in each cell line (Table B in S1

Dataset). However, the cross-cell line performance of our models is significantly diminished,

suggesting that DNA methylation seems to interact with a highly cell type-specific set of

marks, while not changing much between different cell lines. Thus one could speculate that

DNA methylation serves mostly as a recruiter of marks in a cell type-specific manner.

An alternative explanation, however, could be that this drop in performance is explained by

technical variability in mapping epigenetic marks. Therefore, we evaluated this alternative

hypothesis in the case of H3K27me3 by fitting the models of H3K27me3 in each cell line, com-

paring the predictions with an independently generated data track for H3K27me3 in the same

cell line, and evaluating the drop in performance. Here the median reduction of the Pearson’s

r was just 0.01, so the possibility of technical reasons for the aforementioned drop in perfor-

mance is unlikely (data not shown).

In contrast to the silencing epigenetic marks, the activating histone modifications, e.g., his-

tone acetylations and H3K4 methylations, had a median drop of 0.01 (Fig 3C). An illustrating

case can be seen for H3K27me3 and H3K4me3, when the models are fitted in H1 and evalu-

ated in GM12878 (Fig 3D and 3E).

Our findings suggest that activating marks follow association rules that hold throughout

various cell lines and possibly interact with other marks in the very same manner, whereas

silencing marks follow more cell line-specific rules and might possess unique interaction part-

ners in each cell line. This finding further suggests that proteins mediating or interacting with
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activating marks are more ubiquitously expressed and active at similar levels across many cell

types and that those proteins that mediate or interact with silencing marks might vary substan-

tially from cell type to cell type in their expression and activity patterns [44].

When comparing the cross-cell line linear model performance with the performance of tak-

ing data for the identical mark from another cell line as prediction, we observe that the cross-

cell line model performance is better for most marks (S8A Fig) and better for all but three his-

tone modifications (S8B Fig) around the TSSs of protein coding genes. This behavior is similar

Fig 3. Prediction of a mark by cross-cell line models. (A) Scatter plot for the Pearson’s r comparison for each mark (with data for at least

two cell lines) between the median correlation between predicted and measured values, when the models, with which the predictions are

made, are fitted in other cell lines (on all marks that are present in both cell lines), and the intracellular models. For the first part for each

respective mark (with data for at least two cell lines), for each locus constellation, and all ordered pairs of different cell lines, where data for

the mark of interest is available for both cell lines, we fit a model for that mark on all other epigenetic marks, for which data is available for

both cell lines, in the first cell line, predict the enrichment of epigenetic mark of interest in the second cell line, calculate the Pearson’s r

between predicted and measured values, and take the median over all these values for that mark. For the second part for each respective

mark (with data for at least two cell lines), we take the median over all 10-fold CV Pearson’s r values of the intracellular models between

predicted and measured data for that mark over each locus constellation and cell line, where there is data for that mark available. The

median over these median values is shown as dashed red lines. The solid line “y = x” is indicated in red for reference. (B) Barplot of median

Pearson’s r in the cross-cell line setting and the 10-fold CV setting, where we displayed just those marks with a decrease of at least 0.3.

Marks labeled in red are known to have a silencing function and the marks labeled in green are positively associated with gene expression.

(C) Boxplot of difference between median Pearson’s r in the cross-cell line setting and the 10-fold CV setting for those marks with a decrease

of at least 0.3 (left panel) and activating histone modifications, which means here all histone acetylations and H3K4 methylations (right

panel). (Two-sided two-sample Kolmogorov-Smirnov test: D = 1, P = 1.132e-10) (D,E) Scatter plots between predicted and measured

values for (D) H3K27me3 and (E) H3K4me3 for TSSs of protein coding genes in GM12878 cells, when the model was fitted in H1. The line “y

= x” is indicated in red in the scatter plots for reference. (F) Heatmap showing median Pearson’s r between predicted and measured values

for TSSs of protein coding genes over all marks in that target cell line, that are also present in the starting cell line, where the models for the

prediction are fitted in the starting cell line and then used to predict the enrichments in the target cell line. For each entry, the target cell line is

named as the row entry and the starting cell line is named as the column entry.

https://doi.org/10.1371/journal.pone.0186324.g003
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for other locus constellations (Table E and G in S1 Dataset). These results are good agreement

with the findings made by Ernst and Kellis [9].

Our model comparisons across cell types enable the clustering of samples by using the

predictive strengths as a distance metric. When we fit a model for a specific mark in cell line

1 in order to evaluate it in cell line 2, we can cluster the cell lines with regard to how well one

cell line predicts the mark enrichments of another one (Fig 3F). Here we see for TSSs of pro-

tein coding genes that, as expected, the embryonic stem cells H1 and H9 cluster together as

do GM12878 and K562, both being hematopoietic cell lines. Other loci constellations show

these groupings consistently as well (S9 Fig). These observations point towards the conclu-

sion that cell lines of similar origin do have more similar association rules for all marks. The

empirical evidence is limited though, as we focused only on comparatively few cell lines and

because the clustering of cell lines might be biased by the set of marks, for which data is avail-

able. This issue will be addressed below (cf. section “Prediction of marks from IHEC histone

modifications”).

Prediction of gene expression

When modeling gene expression (GEx, see “Materials and Methods”) for both protein coding

and lincRNA genes, based on thermodynamic principles an exponential relationship between

gene expression and epigenetic marks, TFs, and coregulators has been suggested [45, 46]. To

further explore this concept within our study, we fitted the linear model for a fixed cell line

and a fixed gene type

gex � bþ
Xn

i¼1

Xm

bin¼1

ai;binmarki;bin: ð1Þ

where gex is obtained by taking log(GEx + ε), setting the top 1% of values to 1, the bottom 1%

of values to 0 and then scaling the rest linearly between 0 and 1, n is the number marks, m is

the number of bins (either 1 or 40), marki,bin stands for the enrichment value of the i-th mark

at the respective bin around the TSS, and ε is a small pseudocount accounting for genes with

GEx values of 0. At 40-bin resolution, we considered a third alternative, where we only took

data of the middle two bins for each mark (bin 20 and 21) of the 40 bins into account. In that

case, we restricted our model to the information in the +/− 100 bp region around the TSS.

Since it could be, that a mark has an impact on gene expression only beyond a certain

binding strength/likelihood, we also fitted, in addition to linear models, multivariate adaptive

regression spline (MARS) models [47], which can account for such effects. These are of the

form

gex � c0 þ
Xn

i¼1

Xm

bin¼1

Xki;bin

j¼1

ci;bin;jBi;bin;jðmarki;binÞ; ð2Þ

where each Bi,bin,j(marki,bin) is a piecewise linear function (see “Materials and Methods” for

further details).

We then used 10-fold CV for both linear and MARS models, 1-bin and 40-bin resolution

(all bins and middle two bins) around TSSs, and varying pseudocounts (Table H in S1

Dataset). When using the best model for protein coding gene expression we achieved Pearson’s

r between predicted vs. measured values of 0.9 for K562 (Fig 4A), 0.91 for GM12878, 0.89 for

H1, and 0.9 for IMR90 (Fig 4B, p-value <2.2e-16 each), hence we obtained a similar perfor-

mance as in Dong et al. [13], although our approach is more straightforward, simpler in its

assumptions, and uses fewer bins in and around the genes. Unsurprisingly, in each instance
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the best performing model was a MARS model (2) on 40-bin resolution (taking all bins into

account), though the pseudocounts varied. The top performance of linear models (1) was only

slightly reduced (Pearson’s r of 0.89 for K562, 0.88 for GM12878, 0.86 for H1, and 0.88 for

IMR90, p-value <2.2e-16 each), as was the case when taking all models on 40-bin resolution,

where just the middle two bins were considered (Pearson’s r of 0.9 for K562, 0.9 for GM12878,

0.88 for H1, and 0.89 for IMR90, p-value <2.2e-16 each) or even just taking linear models on

the middle two bins (Pearson’s r of 0.89 for K562, 0.88 for GM12878, 0.85 for H1, and 0.86 for

IMR90, p-value <2.2e-16 each). However, when we considered just models on 1-bin resolu-

tion, we obtained significantly reduced performances (Pearson’s r of 0.8 for K562, 0.81 for

GM12878, 0.77 for H1, and 0.8 for IMR90, p-value<2.2e-16 each). Still, these models were in

Fig 4. Predicting CAGE gene expression. (A) Scatter plot between predicted and measured values (when

using 10-fold CV) for CAGE gene expression for protein coding genes in K562 cells when 40-bin resolution

data was taken for the input marks of the MARS model (pseudocount ε optimized). (B) Barplot of Pearson’s r

(when using 10-fold CV) for different models for protein coding genes. The bar labels are encoded by their

model index, where the first letter represents the cell line (K = K562, G = GM12878, H = H1, I = IMR90), the

middle symbols stands for the data input (1 = 1-bin resolution, 40 = 40-bin resolution, 40 m = middle two bins

for each mark in 40-bin resolution), and the latter represents the model type (L = linear model, M = MARS

model). For each of these the pseudocount εwas optimized. (C) Scatter plot between predicted and

measured values for CAGE gene expression for the protein coding genes in GM12878, when a MARS model

on 40-bin resolution data was fitted in K562 cells. The pseudocount ε is the same for calculating the

logarithmized gene expression in both cell lines by using the optimized ε for K562 cells in the 10-fold CV

setting. (D) Barplot of Pearson’s r values for protein coding genes, when considering each possible ordered

pair of different cell lines (analogous to (C), with labels as in (B)), shown in blue, and the Pearson’s r (when

using 10-fold CV) for individual cell lines, shown in red, when using MARS models with 40-bin resolution.

https://doi.org/10.1371/journal.pone.0186324.g004
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the same performance range as the models used by Karlić et al. [14], which worked with the

same resolution.

Just as for the protein coding genes, for lincRNA genes the MARS models on 40-bin resolu-

tion are the best-performing ones, where for H1 just the middle two bins are considered (S10

Fig). However, the performance is significantly reduced compared to the performance on pro-

tein coding genes (Pearson’s r of 0.79 for K562, 0.78 for GM12878, 0.78 for H1, and 0.77 for

IMR90, p-value <2.2e-16 each). The relative drop in performance between protein coding

genes and lincRNA genes was similar for both linear and non-linear models. Also, for both

modeling approaches for the 40-bin setting case (by considering all 40 bins for all marks or

the middle two bins for all marks) the model performance was best, whereas the model perfor-

mance significantly decreased when applying 1-bin data only.

We conclude from these parameter scans that strong model performances (particularly for

protein coding genes) can be achieved with linear or mixed linear models (like MARS) as long

as the resolution around the TSS is sufficiently high. Also, the information in the +/− 100 bp

region around the TSS seems to be of particular importance for each model’s performance.

This conclusion is supported by the case, where we fitted the MARS models on 100% of the

data on 40-bin resolution (Table I in S1 Dataset), and where primarily mark enrichments

either in or close to the +/− 100 bp region are used. A notable exception is H3K36me3, where

in 5 out of the 8 displayed models bin positions downstream more than 1500 bps of the TSS

were considered. This, however, is in good agreement with the known behavior of H3K36me3

since it accumulates in actively transcribed genes in downstream regions of the gene body.

After we investigated the performance in the intra-cell line setting using 10-fold CV, we

tested how cell line-specific or unspecific the models are for protein coding and lincRNA gene

expression. Just as in the case of (epigenetic) marks, for each ordered pair of different cell lines

we considered the marks for which data is available in both cell lines, fitted a model in the first

cell line for either protein coding or lincRNA genes and then predicted gene expression in the

other cell line. The performance of these cross-cell line models was comparable to the perfor-

mance of the models obtained, when using 10-fold CV in the intra-cell line setting (Fig 4C and

4D, S11 Fig, and Table J in S1 Dataset). Thus, we obtain that for both protein coding and

lincRNA genes the gene expression models, as functions of the marks around the TSS, appear

to be independent of the specific cell line.

Prediction of marks from IHEC histone modifications

One main objective of the IHEC consortium was to create genome-wide, comprehensive

maps for six standard histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac,

H3K27me3, H3K36me3) complemented by DNA methylation and RNA-Seq data for a large

panel of cell lines. This raises the question in how far we can account for the information con-

tent of all marks in various cell types by the six IHEC histone modifications. For the sake of

simplicity, we will refer to these six histone modifications here as the “IHEC marks”. First,

we aimed to predict for all cell lines all other marks from the IHEC marks using linear models

at 1-bin resolution. When performing 10-fold CV on each fixed constellation, we obtain a

median over each other mark’s median Pearson’s r over all possible constellations of 0.76 (Fig

5A and Table K in S1 Dataset, p-value of t-test <2.2e-16 each). When we restrict ourselves to

certain locus constellations like the region around the TSS of protein coding genes, the median

Pearson’s r over all other marks does not differ (0.76) from the overall median Pearson’s r

(S12A Fig). However, when we only consider histone modifications, the median Pearson’s r

increases from 0.76 to 0.85 (S12B Fig) and decreases to 0.73 when we consider all other marks

except histone modifications (S12C Fig).
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If we compare the performance of these reduced models to the performance of the compre-

hensive models involving all possible marks as above, we see that the results of the latter are

significantly better (Fig 5A, the BIC value for the all-mark models is always smaller for all

other marks and all cell lines, data not shown), but the difference is smaller for histone modifi-

cations (S13A Fig) at TSSs of protein coding genes. This suggests that the IHEC mark subset is

recapturing the possible prediction performance of histone modifications by all other marks

better than for non-histone marks. Furthermore, the models focusing on the IHEC marks

show a better or equally good performance compared to the median correlation of the same

mark in another cell line for most marks and for all histone modifications (S13B and S13C

Fig) at TSSs of protein coding genes. Hence, for most other surveyed marks, in particular all

other histone modifications, the models fitted on the IHEC marks give us a better or equally

good prediction performance for TSSs of protein coding genes than taking the enrichments

from other cell lines at the respective TSSs. Similar observations can be made at other locus

constellations (Table B, E, and K in S1 Dataset).

Next, we assessed the cell line specificity of these models by considering all ordered pairs of

different cell lines. We fitted a linear model on the IHEC marks for each other mark available

in both cell lines for each fixed locus constellation in the first cell line and used these models

to predict the measured values in the second cell line. The median over each possible mark’s

median Pearson’s r over all ordered pairs of different cell lines and all locus constellations was

0.71 (Table L in S1 Dataset, p-value of t-test <2.2e-16 for 3219 of the 3228 Pearson’s r values).

Hence, most of the models perform similarly compared to the 10-fold CV performance in one

cell line on the IHEC data (Fig 5B and (S14A Fig) for TSSs of protein coding genes). Addition-

ally, when comparing the cross-cell line IHEC model performance with the performance of

taking data for the identical mark from another cell line, we observe that our cross-cell line

Fig 5. Prediction of a mark by IHEC marks. (A) Scatter plot for median Pearson’s r comparison for each mark (apart from the six IHEC

histone modifications) at TSSs of protein coding genes between the 10-fold CV model performance, where the models are fitted on all other

marks, and the 10-fold CV model performance, where the models are fitted on IHEC marks. The medians over the median Pearson’s r

values are shown as dashed red lines. The solid line “y = x” is indicated in red for reference. (B) Scatter plot for median Pearson’s r

comparison for each mark (apart from the six IHEC histone modifications), where there is data for at least two cell lines available, at TSSs of

protein coding genes between the median 10-fold CV model performance, where the models are fitted on IHEC marks, and the median

correlation between predicted and measured values, when the models, with which the predictions are made, are fitted in other cell lines on

the IHEC marks. The medians over the median Pearson’s r values are shown as dashed red lines. The solid line “y = x” is indicated in red for

reference. (C) Heatmap showing median Pearson’s r between predicted and measured values for TSSs of protein coding genes over all

marks for which data is available in all cell lines apart from the IHEC marks (i.e., DNase hypersensitivity, H2.AZ, H3K4me2, H3K9ac,

H3K79me2, H4K20me1), where the models for the prediction are fitted on the IHEC marks in the starting cell line and then used to predict

the enrichments in the target cell line. For each entry, the target cell line is named as the row entry and the starting cell line is named as the

column entry.

https://doi.org/10.1371/journal.pone.0186324.g005
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IHEC model performance is better for the majority of marks (S14B Fig) and better for all but

one histone modification (S14C Fig) around the TSSs of protein coding genes, which appears

to be a consistent pattern at other locus constellations as well (Table E and L in S1 Dataset).

On the other hand, the cross-cell line model performance, where all marks are allowed, is

stronger than the cross-cell line IHEC model performance for both all marks (S14D Fig) and

histone modifications (S14E Fig).

The models created for each constellation and all other marks aside from the six IHEC his-

tone modifications on 100% of the data (i.e. we take the IHEC histone modifications at 100%

of the loci for that particular constellation as input and fit a model for a certain mark at said

loci) can in principle be applied to extend the epigenome and regulatory protein data for

any cell line for which ChIP-Seq data for the six IHEC histone modifications are available

(Table M in S1 Dataset). This is particularly true for marks whose models have been shown to

be cell line-unspecific here.

As above (Fig 3F), we tried to cluster cell lines with respect to how well one cell line predicts

the mark enrichments of another one with the cross-cell line IHEC models (Fig 5C at TSSs of

protein coding genes). Here we restricted the clustering analysis to those six epigenetic marks

(DNase hypersensitivity, H2.AZ, H3K4me2, H3K9ac, H3K79me2, H4K20me1) for which data

is available in all five cell lines. When focusing on how well their marks are predicted by other

cell line models, we observe for loci associated with protein coding genes (Fig 5C and S15A

and S15B Fig), that similarly to Fig 3F the two embryonic stem cells H1 and H9 cluster

together as do the blood-related cell lines GM12878 and K562. Based on these observations,

we conclude that cell lines of similar phenotype show a similar performance for the prediction

of enrichments of marks, at least at protein coding genes. It is counterintuitive, however, that

the models fitted on embryonic stem cell lines (H1 and H9) are better at predicting the enrich-

ments of the non-embryonic cell lines (GM12878, IMR90, K562) compared to how models fit-

ted on H1 perform on H9 data and vice versa (Fig 5C and S15 Fig).

Recursive selection of marks according to their information content

Next, we wanted to find out if we can identify an “optimal” subset of marks for predicting

many of the remaining marks of a given sample. Towards this aim, we analyzed the informa-

tion content of the marks by recursively adding them as model input (see “Materials and

Methods”). For simplicity, we restricted our calculations to the regions around TSSs of protein

coding genes for all cell lines. For each round and cell line, we selected the mark that had the

highest median Person’s r over all not yet selected marks through 10-fold CV, when creating

linear models with the already selected marks and the current mark as input. The selected

mark order differed across cell lines (Table N in S1 Dataset). For instance, H3K4me3 is a top

mark in four cell lines, but occupies the lowest rank of all 30 marks analyzed in H9. On the

other hand, H3K4me2 is strongly correlated to H3K4me3, thus having a similar information

content, and is a top mark in H9, but selected only at later stages in the other four cell lines.

This is the case, because for our selection method one of these two marks is sufficient to be

included at early stages, whereas using both together would not strongly enhance the predic-

tion performance of the selected marks.

Unsurprisingly, the rank order of marks is more consistent across cell lines when we rank

in each cell line each mark by its median Pearson’s r when it alone, i.e., the models in the first

selection round, is used in the linear models to predict the other marks (Table O in S1 Data-

set). For instance, ChIP-Seq data for the nuclear receptor corepressor/HDAC3 complex sub-

unit TBLR1 [48] were available only in the cell lines K562 and GM12878, but in both cases it

was always selected as the first mark. The median Pearson’s r for predicting all other marks in
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K562 by TBLR1 is 0.77 (Tables P and Q in S1 Dataset), thus having the same information

content as the six IHEC histone modifications (median Pearson’s r 0.77). For GM12878,

the median Pearson’s r for predicting all other marks by TBLR1 is 0.71 (Tables R and S in

S1 Dataset), thus having even a stronger median Pearson’s r performance than the six IHEC

histone modifications together (median Pearson’s r 0.69). This shows that at least for hemato-

poietic cell lines analyzed at TSSs of protein coding genes, TBLR1 has a large information con-

tent for all other marks. Also, H3K14ac ranks in the top 6 marks in all cell lines, where data is

available, just as GTF2F1 is in the top 4 marks. In contrast, with our analytical approach silenc-

ing marks like DNA methylation, H3K27me3, and H3K9me3, provide relatively low predictive

value for all other epigenetic marks and regulatory proteins (Fig 6A and S16 Fig).

Generally, when selecting increasingly up to six marks for each cell line we see a signifi-

cantly enhanced median Pearson’s r for all cell lines compared to the six IHEC histone modifi-

cations (Fig 6B), rising from 0.77 to 0.83 in K562, from 0.69 to 0.81 in GM12878, from 0.74 to

0.79 in H1, from 0.89 to 0.91 in IMR90, and from 0.82 to 0.86 in H9 (Tables P,Q,R,S,T,U,V,

W,X, and Y in S1 Dataset). When we start with just one-mark models and then start adding

other marks we observe a strong increase in the median Pearson’s r (Fig 6C and S17 Fig).

However, after this strong, initial increase the value of adding more marks plateaus and includ-

ing even more marks only slightly increases the median Pearson’s r. We find the general rule,

that selecting few, informative marks can result in a predictive performance of up to a median

Pearson’s of 0.9. To improve the predictive values of our models beyond that level, experimen-

tal data for a significantly larger number of marks is required. In addition, we have to caution,

that a high median value, does not guarantee a good prediction performance for all other

marks. For instance, REST never has a Pearson’s r of above 0.35 in this above selection regime

for K562 until it is selected as the 94th mark (Table P in S1 Dataset).

Discussion

Eukaryotic gene regulation is characterized by DNA microstates composed of TFs, coregula-

tory complexes, nucleosomes, histone modifications, DNA methylation, and parts of the

three-dimensional architecture of genomes. To resolve the microstates’ apparent complexity

Fig 6. Compression of information content. (A) Barplot of median Pearson’s r for each mark comparing the measured and predicted

values for all other marks in the region around TSSs of protein coding genes in H9 cells. For each mark, we predicted for each other mark the

enrichments using 10-fold CV and fitted linear models with solely the given mark as input (plus constant). Then we calculated the median

Pearson’s r between predicted and measured values for all these other marks. (B) Median Pearson’s r performance on all other marks when

using 10-fold CV and the IHEC marks or the top 6 selected marks for each respective cell line. (C) Number of marks that are needed to

exceed a given median Pearson’s r threshold in K562 cells.

https://doi.org/10.1371/journal.pone.0186324.g006
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could enable fundamental insights into the mechanistic underpinning of the epigenetic regula-

tion of mammalian transcription. Modern whole-genome sequencing methods are now pro-

viding a large amount of data for the in-depth analysis of these marks. Since it is known, that

many epigenetic marks and regulatory protein colocalize, it is not surprising, that only a small

fraction of the potential combinatorial complexity is observable in genome-wide ChIP-seq

datasets stemming from the same cell types. However, it has been challenging to chart the

combinatorial code of localized signals from epigenetic marks and TFs bound to DNA in a sys-

tematic and quantitative way.

In this study, we showed that a small number of marks combined with linear models of low

complexity can effectively predict other marks across the genome, although, as a word of cau-

tion, this does not necessarily apply to every locus, but usually the vast majority of them. This

performance observation holds true both for predictions within individual and across different

cell lines. These generalizable “rules of association” encoded in these models were found to

be largely cell line-independent for activating marks, but more cell line-specific for silencing

marks, for both protein coding and lincRNA genes. Based on these observations, one could

speculate if silencing marks may interact with varying binding partners in different cell lines,

while activating marks may not.

Linear models are also capable of predicting gene expression levels from marks with high

average correlation across the genome. We found that the resolution of data around the tran-

scription start site (TSS) was more important for predicting gene expression than the window

width around the TSS. The best-performing models used a 100 bp resolution around the TSS.

Utilizing this binning our models with a large window (+/− 2 kb relative to the TSS) and with

a relatively small window of only a fraction of the larger window (+/−100 bp) performed simi-

larly well. This observation is suggestive of strong enrichments of predictive marks located

very close to the TSS.

The extent of information “compression” that can be achieved depends strongly on the type

of marks we included in our analysis. For example, the transducin beta-like 1 X-linked recep-

tor 1 (TBLR1), for which we only had data in the two hematopoietic cell lines K562 and

GM12878, was always the best mark for predicting all other marks, with a performance equal

or superior to models, which used all six of the IHEC histone modifications. Thus, it could

prove valuable to advance the study of this nuclear receptor corepressor further [49]. In con-

trast, silencing marks like DNA methylation, H3K27me3 or H3K9me3 do seem to have much

less predictive power compared to other epigenetic or regulatory protein marks. Overall, for

each cell line, a relatively modest number of marks, compared to the total measured, were

required to predict most other marks with a median Pearson’s r up to 0.9. Improving the

model performances beyond this level required the inclusion of a significantly larger number

of marks. Of course, it would be desirable to have an optimum number of core marks for

imputing other marks. This, however, appears to be very much dependent on the kind of

marks we are interested in. For instance, in case we want to study the pattern of activating

marks, a handful of histone acetylations might be very informative. If we are interested in

other kinds of marks, we might benefit more from a different set of marks.

The ENCODE and NIH Roadmap Epigenomics Consortia have focused on steady-state

data for several cell lines, which were chosen because they are considered to be representative

for distinct cell types. Based on this type of data, we found a surprisingly strong correlation

structure between various marks, indicative of a great information redundancy among differ-

ent (epigenetic) marks. From another perspective, this could be utilized for predicting most

other marks based on few measured signals. We speculate that the dynamic causal relation-

ships between different marks—which marks recruit other marks—and the network effects

through which different genes influence each other, will be more difficult to dissect. As we
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have previously shown this dynamic type of information is required to predict gene regulatory

functions [1]. Approaches based on steady-state data [4–6] mostly yield acyclic causal graphs,

but are unable to define dynamic rules. As a logical next step, it will be highly instructive

to investigate time-resolved ChIP-Seq data at larger scale [50–56] derived from, e.g., cells

responding to external stimuli. Ultimately, it will be intriguing to see if the steady-state redun-

dancies identified in this study could be extended towards the highly dynamic mechanisms

underlying gene regulation.

Materials and methods

URLs

• Encyclopedia of DNA Elements (ENCODE) Consortium, http://genome.ucsc.edu/

ENCODE/ (old) and http://encodeproject.org/ (new)

• ENCODE blacklist, http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz

• NIH Roadmap Epigenomics project, http://roadmapepigenomics.org

• hg19 data, http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/

• Gencode v. 18, http://www.gencodegenes.org/releases/18.html

• Python package HTSeq, http://www-huber.embl.de/users/anders/HTSeq/

• Python packge wiggelen, http://pypi.python.org/pypi/wiggelen/

• R software, http://cran.r-project.org/

• R package earth, http://cran.r-project.org/package=earth.

ENCODE and NIH Roadmap Epigenomics mark data processing

We downloaded the ENCODE and NIH Roadmap Epigenomics data (Table Z in S1 Dataset)

for the five human cell lines (GM12878, H1, H9, IMR90, and K562). For each mark/cell line

constellation, we randomly downloaded one of the data files available. The treatment protocols

for the cells and the sample preparation and data generation protocols for the different samples

can be found on the homepages of the respective consortium. All these data were either wig or

bigwig files, where the latter were converted to bedGraph files. Following this, we processed

the data with the Python scripts that we have released and documented at http://vcp.med.

harvard.edu/linear-epigenome.html, which make use of the HTSeq and wiggelen packages.

First, for each protein coding or lincRNA gene, respectively, we determined with the help of

the Gencode annotation set (version 18) where the outmost TSS or TTS of all transcripts of the

respective gene lie in the hg19 assembly. Then we considered for each gene three regions:

1. +/− 2kbs around the outmost TSS

2. the gene body (the region between the outmost TSS and TTS)

3. +/− 2kbs around the outmost TTS

Following this, for each cell line and each data file for an individual mark we counted the

number of tags falling into the aforementioned regions for each gene, where we considered

1-bin and 40-bin resolutions for each of these regions (40-bin resolution was just considered

for TSSs). Then we stored for each resolution type and each region type the result for each
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gene and each bin, where we divided each count for the bin by the size of the bin. The latter

matters only since the gene body varies in length from gene to gene. In addition to that for

DNA methylation data we also count the number of CpGs in each of the above regions and

bins from the hg19 sequence data and normalize the DNA methylation values regarding the

number of CpGs.

After we did this for both protein coding and lincRNA genes, we created with R [57] a

matrix for each cell line, region, and bin resolution, where we essentially glued together all of

the above output for each mark available for this cell line, only for DNA methylation we took

once the absolute value from above and then the normalized value with respect to the number

of CpGs in the regions. We deleted those entries for genes, where we have an overlap with the

ENCODE blacklist, which includes loci where artifact signals for ChIP-Seq and DNase-Seq

data are known, and excluded those genes localized on the sex chromosomes. Following this,

we took for each mark the one respectively 40 columns for this mark and set the bottom 1% to

0, the top 1% to 1, and scaled the rest linearly between 0 and 1. Hence, e.g., for the TSS region

of protein coding genes in K562 in 1-bin resolution we obtained a matrix of dimension

19399 × 132, where 19399 is the number of genes, 132 is the number of marks, and each entry

at position (i, j) reflects the enrichment of mark j at the TSS of gene i. If we consider the 40-bin

resolution in the same setting, we obtain a matrix of dimension 19399 × (40 � 132), since for

each mark we have 40 columns. If we consider a cell line like H9, where we have DNA methyl-

ation data at hand, we obtain in the 1-bin setting for protein coding genes a matrix of dimen-

sion 19399 × 31, where we have 30 marks for that cell line, but included two columns for DNA

methylation, one for the absolute value and one for the normalized value with respect to the

number of CpGs in the region. All generated data can be found at http://vcp.med.harvard.edu/

linear-epigenome.html.

Model fitting, measuring Pearson’s r and p-value

Unless otherwise stated, we used the built-in R function lm() for fitting linear models. For

the gene expression analysis, we also used multivariate adaptive regression spline (MARS),

where the fitted models are weighted sums of piecewise linear functions B(x), which are of the

form max(0, x − c) or max(0, c − x) for some constant c. Here we used the R package earth and

the function earth(). We obtained the Pearson’s r between the measured and predicted val-

ues and the p-value of t-test by the built-in R function cor.test().

Predicting one mark from the other marks

For a fixed gene type (protein coding or lincRNA genes), region type (+/− 2kbs around TSS,

gene body or +/− 2kbs around TTS), and cell line we first took one column out of the matrix

for this locus constellation, which corresponds to the mark of interest. For DNA methylation,

we used the normalized data values (see above). For the remaining marks, we removed the

absolute DNA methylation data when predicting DNA methylation. When predicting values

other than DNA methylation, although DNA methylation data were available for this cell line,

we deleted the normalized DNA methylation data as we were only interested in the total pres-

ence of DNA methylation and its effects. We then used 10-fold CV to obtain the predictions.

For fitting the 100% models we simply considered 100% of the genes, fitted a model for a given

mark and constellation, and extracted all weights from this linear model.

Predicting the enrichment of one mark with cross-cell line models

For a fixed ordered pair of different cell lines, e.g., (K562,GM12878), and fixed locus constella-

tion, we considered all marks for which data in both cell lines was available. We reduced the
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respective matrices for both cell lines here to these marks. Once we fixed a mark of interest

(for which we do have data in both cell lines), we took this mark out of the matrix for the first

cell line and obtained a vector and the remaining matrix (DNA methylation was treated as in

the paragraph from above). We fitted a model for this mark in the first cell line on the 100%

data and tried to predict the mark in the second cell line by using data for all other marks that

were present in both cell lines. We measured the Pearson’s r and the p-value by comparing the

measured and predicted value for the mark of interest in the second cell line.

Processing CAGE gene expression data

Gene expression data was available only for four of the cell lines (K562, GM12878, H1, and

IMR90) and we chose to take CAGE nucleus data (Table Z in S1 Dataset). We processed these

data exactly like the mark data on 40-bin resolution around the TSSs for both gene types

(apart from the normalization between 0 and 1). Since we had plus and minus strand data files

for each cell line, we simply summed for each gene the middle two bins for both data files, i.e.,

we define the gene expression for a gene by GEx = bin20,+ + bin21,+ + bin20,− + bin21,−, where

binj,? should indicate the value of bin j for the respective strand file (?) for a particular gene of

interest. Hence, we took the sum of values in the +/− 100 bp region around the TSS for both

strand information data.

Predicting (CAGE) gene expression

For a fixed cell line of the four cell lines mentioned above and a fixed gene type, we took the

gene expression data file from above and added various pseudocounts ε = 0.001, 0.01, 0.1, 1 to

each gene, respectively, logarithmized the data, set the top 1% of the data to 1, the bottom 1% to

0, and scaled the rest linearly between 0 and 1, which we name gex. Then we considered three

data inputs: In the first data input, we took 1-bin mark resolution data around the TSSs of this

gene type, in the second it was 40-bin resolution data, and in the third it was 40-bin resolution

data, where for each mark we just considered the two middle bins as input. If DNA methylation

data was available, we just considered the absolute (not the normalized) DNA methylation data.

The models were fitted as a (completely) linear model (lm()) or as a (piecewise linear) MARS

model (earth()). In analogy to predicting the marks we used 10-fold CV here and calculated

the Pearson’s r and the p-value between the measured and predicted values.

Predicting (CAGE) gene expression with cross-cell line models

For a fixed ordered pair of different cell lines, gene type, input data type for the marks (1-bin

resolution, 40-bin resolution or just the middle two bins in 40-bin resolution), and model type

(linear or MARS model), we took the ε from above that maximized the Pearson’s r for the first

cell line for that gene type, input data type, and model type. We obtained the gene expression

(gex) for the gene type of interest in both cell lines with respect to the ε in the first cell line just

as above. We took only those marks for the model fitting (in the first cell line) and validating

(in the second cell line), that were present in both cell lines, where again only absolute DNA

methylation data was taken, if available. We then fitted the model on 100% of the data in the

first cell line, predicted the gene expression in the second cell line, and calculated the Pearson’s

r and p-value between predicted and measured values.

Predicting marks from the IHEC histone modifications

For a fixed constellation we took the data from the six IHEC histone modifications (H3K4me1,

H3K4me3, H3K9me3, H3K27ac, H3K27me3, H3K36me3) and fitted a model for each other
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mark available (i.e., aside from these six histone modifications). Again, if we wanted to predict

DNA methylation we just considered the normalized value. We used 10-fold CV to obtain the

Pearson’s r and p-value. For establishing the models on 100% of the data we did the same anal-

ysis as in the case, where all other marks were used to predict a particular mark of interest.

Predicting the enrichment of marks from the IHEC histone modifications

with cross-cell line models

For a fixed ordered pair of different cell lines and fixed locus constellation, we applied the

same strategy as above with the only difference being that the input data was restricted to the

six IHEC histone modifications. The marks that were to be predicted were marks for which we

have data for both cell lines (aside from the six IHEC histone modifications).

Selecting marks according to their information content

For the sake of simplicity, we focused here on the +/− 2 kb regions around TSSs of protein cod-

ing genes. For each cell line (where n is the number of marks for the given cell line) we applied

the following algorithm:
// Initialize the set of chosen marks S
S ! ;.
// Initialize the set of all marks K
K ! {mark1, . . ., markn}.
// Initialize the selection order vector ordervec
ordervec! 0 2 Rn.
// i indicates the number of the selection round
For i = 1, . . ., n:

// initialize vector v for the median Pearson’s r
// of the not yet selected marks
v! 0 2 Rnþ1� i.
// mark(j) loops over all not yet selected marks
For mark(j) 2 K\S:
Set Sj = S [ {mark(j)}.
Predict for each mark in K\Sj
the Pearson’s r when using 10-fold CV
with input marks Sj for the model
(DNA methylation as usual).
vj ! median of the Pearson’s r values.
Let markm correspond to the maximum entry of v.
// Extend S by markm.
S ! S [ {markm}.
// Set i—th entry of ordervec to m.
orderveci = m.

The vector ordervec gives us the selection order.

Supporting information

S1 Dataset. Supporting tables. This file contains 27 sheets, where we do have information

about the marks used, Pearson’s r and p-values for each situation evaluated, fitted linear mod-

els on 100% of the data, mark information content, and a list with download links.

(XLSX)

S1 Fig. 10-fold CV model performance histogram. Histogram of Pearson’s r between mea-

sured and predicted values (when using 10-fold CV) for all marks and constellations.

(TIF)
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S2 Fig. Normalized DNA methylation enrichments. Histogram of normalized DNA methyl-

ation enrichments in the regions around TSSs of protein coding genes in H1. Here a value of 0

means that 0% of the CpGs are methylated, and a value of 1 means that 100% of the CpGs are

methylated.

(TIF)

S3 Fig. 10-fold CV model performance comparison against “reference models”, where the

“predictions” are the enrichments of other ChIP-seq data. (A) Scatter plot for median Pear-

son’s r comparison for each mark at TSSs of protein coding genes between the 10-fold CV

model performance and the correlation of the best correlated mark in the same respective cell

line. That means for each mark we take the median 10-fold CV Pearson’s r over all cell lines,

where there is data for that mark. Then for each other mark, which we name mark2 here, we

take median Pearson’s r between the target mark and mark2 enrichments at TSSs of protein

coding genes over all cell lines, where there is data for both, and then we take the maximum

value of it. (B) same as (A), only that we consider just histone modifications, where the value

for the “reference model” is still taken over all marks and not just histone modifications. (C)

Scatter plot for median Pearson’s r comparison for each mark, where there is data for that

mark available in at least two cell lines, at TSSs of protein coding genes between the 10-fold CV

model performance and the correlation of the identical mark in all other cell lines. Whereas

the first part is just as above, for the second one we do consider for each mark all ordered pairs

of different cell lines, where we do have data for that mark in both cell lines, calculate the Pear-

son’s r between the enrichments at TSSs of protein coding genes in both cell lines and take the

median over it. (D) same as (C), only that we consider just histone modifications.

(TIF)

S4 Fig. Histogram of the mark weights in the linear model fitted for all marks on 100% of

the data for each respective constellation for protein coding genes. (A) For TSSs in H1, (B)

transcripts in H1, (C) TTSs in H1, (D) TSSs in H9, (E) transcripts in H9, (F) TTSs in H9, (G)

TSSs in GM12878, (H) transcripts in GM12878, (I) TTSs in GM12878, (J) TSSs in IMR90, (K)

transcripts in IMR90, (L) TTSs in IMR90, (M) TSSs in K562, (N) transcripts genes in K562,

and (O) TTSs in K562.

(TIF)

S5 Fig. Histogram of the mark weights in the linear models fitted for all marks on 100% of

the data for each respective constellation for lincRNA genes. (A) For TSSs of lincRNA genes

in H1, (B) transcripts in H1, (C) TTSs in H1, (D) TSSs in H9, (E) transcripts in H9, (F) TTSs

in H9, (G) TSSs in GM12878, (H) transcripts in GM12878, (I) TTS in GM12878, (J) TSSs in

IMR90, (K) transcripts in IMR90, (L) TTSs in IMR90, (M) TSSs in K562, (N) transcripts in

K562, and (O) TTSs in K562.

(TIF)

S6 Fig. Barplot of selected mark types for different mark types from the linear models fit-

ted for all marks on 100% of the data for each respective constellation for protein coding

genes. (A) For transcripts in H1, (B) TTSs in H1, (C) TSSs in GM12878, (D) transcripts in

GM12878, (E) TTSs in GM12878, (F) TSSs in IMR90, (G) transcripts in IMR90, (H) TTSs in

IMR90, (I) TSSs in K562, (J) transcripts in K562, and (K) TTSs in K562. The description of the

plots is analogous to Fig 2F.

(TIF)

S7 Fig. Barplot of selected mark types for different mark types from the linear models fit-

ted for all marks on 100% of the data for each respective constellation for lincRNA genes.
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(A) For TSSs in H1, (B) transcripts in H1, (C) TTSs in H1, (D) TSSs in GM12878, (E) tran-

scripts in GM12878, (F) TTSs in GM12878, (G) TSSs in IMR90, (H) transcripts in IMR90, (I)

TTSs in IMR90, (J) TSSs in K562, (K) transcripts in K562, and (L) TTSs in K562. The descrip-

tion of the plots is analogous to Fig 2F.

(TIF)

S8 Fig. Cross cell-line model performance comparison against “reference models”,

where the “predictions” are the enrichments of other ChIP-seq data. (A) Scatter plot

for median Pearson’s r comparison for each mark at TSSs of protein coding genes between

the median correlation between predicted and measured values, when the models, with

which the predictions are made, are fitted in other cell lines (on all marks that are present in

both cell lines), and the median correlation of the identical mark in all other cell lines (the

latter part is as in S3C Fig). (B) same as (A), only that we consider just histone modifica-

tions.

(TIF)

S9 Fig. Cross-cell line model clustering of cell lines at different locus types. (A) Heatmap

showing median Pearson’s r between predicted and measured values for transcripts of protein

coding genes over all marks in that target cell line, that are also present in the starting cell line,

where the models for the prediction are fitted in the starting cell line and then used to predict

the enrichments in the target cell line. For each entry, the target cell line is named as the row

entry and the starting cell line as named as the column entry. (B),(C),(D), and (E) same as (A)

for TTS of protein coding genes, TSSs of lincRNA genes, transcripts of lincRNA genes, and

TTSs of lincRNA genes, respectively.

(TIF)

S10 Fig. Model performance for CAGE for lincRNA genes. Barplot of Pearson’s r (when

using 10-fold CV) for different models for lincRNA genes. The models are indexed analo-

gously to Fig 4B and for each of these the pseudocount ε was optimized.

(TIF)

S11 Fig. Cross-cell line performance for CAGE models. Barplot of Pearson’s r, when consid-

ering each possible ordered pair of different cell lines, shown in blue, and the Pearson’s r

(when using 10-fold CV) for individual cell lines, shown in red, when using linear models on

40-bin resolution for protein coding genes (A), MARS models on 40-bin resolution (middle

two bins) for protein coding genes (B), linear models on 40-bin resolution (middle two bins)

for protein coding genes (C), MARS models on 1-bin resolution for protein coding genes (D),

linear models on 1-bin resolution for protein coding genes (E), MARS models on 40-bin

resolution for lincRNA genes (F), linear models on 40-bin resolution for lincRNA genes (G),

MARS models on 40-bin resolution (middle two bins) for lincRNA genes (H), linear models

on 40-bin resolution (middle two bins) for lincRNA genes (I), MARS models on 1-bin resolu-

tion for lincRNA genes (J), and linear models on 1-bin resolution for lincRNA genes (K). The

description of the plots is analogous to Fig 4D.

(TIF)

S12 Fig. 10-fold CV IHEC model performance. (A) Histogram of Pearson’s r over all other

marks between predicted and measured values (when using 10-fold CV) over all cell lines

(where data was available for this mark) around the TSSs of protein coding genes. (B) Histo-

gram of Pearson’s r over all cell lines, all other histone modifications (where data for these

marks was available for this cell line), and all locus constellations. (C) Histogram of Pearson’s r

over all cell lines, marks that are not histone modifications (where data for these marks was
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available for this cell line), and all locus constellations.

(TIF)

S13 Fig. 10-fold CV IHEC model performance comparison against “reference models”,

where the “predictions” are the enrichments of other ChIP-seq data or 10-fold CV models

fitted on all marks. (A) Scatter plot for median Pearson’s r comparison for each histone modi-

fication (apart from the six IHEC histone modifications) at TSSs of protein coding genes

between the 10-fold CV model performance, where the models are fitted on all other marks,

and the 10-fold CV model performance, where the models are fitted on IHEC marks. (B) Scat-

ter plot for median Pearson’s r comparison for each mark (apart from the six IHEC histone

modifications), where there is data for that mark available in at least two cell lines, at TSSs of

protein coding genes between the 10-fold CV model performance, where the models are fitted

on IHEC marks, and the median correlation of the identical mark in all other cell lines (as in

S3 Fig). (C) same as (B), only that we consider just histone modifications (apart from the six

IHEC histone modifications).

(TIF)

S14 Fig. Cross cell-line model IHEC performance comparison. (A) Scatter plot for median

Pearson’s r comparison for each histone modification (apart from the six IHEC histone modi-

fications), where there is data for at least two cell lines available, at TSSs of protein coding

genes between the median 10-fold CV model performance, where the models are fitted on

IHEC marks, and the median correlation between predicted and measured values, when the

models, with which the predictions are made, are fitted in other cell lines on the IHEC marks.

(B) Scatter plot for median Pearson’s r comparison for each mark (apart from the six IHEC

histone modifications), where there is data for at least two cell lines available, at TSSs of protein

coding genes between the correlation between predicted and measured values, when the mod-

els, with which the predictions are made, are fitted in other cell lines on IHEC marks, and the

median correlation of the identical mark in all other cell lines (as in S8 Fig). (C) same as (B),

only that we consider just histone modifications. (D) Scatter plot for median Pearson’s r com-

parison for each mark (apart from the six IHEC histone modifications), where there is data

for at least two cell lines available, at TSSs of protein coding genes between the median correla-

tion between predicted and measured values, when the models, with which the predictions are

made, are fitted in other cell lines on the IHEC marks, and the median correlation between

predicted and measured values, when the models, with which the predictions are made, are fit-

ted in other cell lines on all marks, that are present in both cell lines. (E) same as (D), only that

we consider just histone modifications.

(TIF)

S15 Fig. Cross-cell line IHEC model clustering of cell lines at different locus types. (A)

Heatmap showing median Pearson’s r between predicted and measured values for transcripts

of protein coding genes over all marks for which there is data available in all cell lines apart

from the IHEC marks (i.e., DNase hypersensitivity, H2.AZ, H3K4me2, H3K9ac, H3K79me2,

H4K20me1), where the models for the prediction are fitted on the IHEC marks in the starting

cell line and then used to predict the enrichments in the target cell line. For each entry, the tar-

get cell line is named as the row entry and the starting cell line as named as the column entry.

(B),(C),(D), and (E) same as (A) for TTS of protein coding genes, TSSs of lincRNA genes,

transcripts of lincRNA genes, and TTSs of lincRNA genes, respectively.

(TIF)

S16 Fig. Barplot of median Pearson’s r for a particular mark over the measured and pre-

dicted values for all other marks in the region around TSSs of protein coding genes. (A)
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For GM12878, (B) H1, (C) IMR90, and (D) K562. The description of the plots is analogous to

Fig 6A.

(TIF)

S17 Fig. Number of marks that are needed in order to exceed a given median Pearson’s r

threshold. (A) For GM12878, (B) H1, (C) H9, and (D) IMR90. The description of the plots is

analogous to Fig 6C.

(TIF)
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