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Supplementary Figure 1
Detailed schematic overview of linear stem-loop method

Genomic DNA is randomly sheared to an average of ~300 bp, end-repaired, A-tailed, and ligated to uracil-containing stem loop adapter
1. Covalently closed DNA molecules with stem-loop adapters ligated to both ends are selected for by treatment with a mixture of Lambda
exonuclease and E. coli Exonuclease |, and then treated with Cas9-sgRNA complex. Cleaved molecules will have a newly available end for
subsequent ligation of stem-loop adapter 2. Ligation of both stem loop adapters provides required 5’ and 3’ sequences for PCR and
high-throughput sequencing.
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Supplementary Figure 2
Detailed schematic overview of CIRCLE-seq method.

Genomic DNA is randomly sheared to an average of ~300 bp, end-repaired, A-tailed, and ligated to uracil-containing stem-loop adapters.
Covalently closed DNA molecules with stem-loop adapters ligated to both ends are selected for by treatment with a mixture of Lambda
exonuclease and E. coli Exonuclease I. 4 bp overhangs are released with a mixture of USER enzyme and T4 PNK, and DNA molecules are
circularized at low concentrations favoring intramolecular ligation. Unwanted linear DNA is degraded with Plasmid-Safe ATP-dependent DNase.

Circular DNA is treated with Cas9-sgRNA complex and cleaved, linearized DNA is ligated to sequencing adapters and amplified for high-
throughput sequencing.
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Supplementary Figure 3
Optimization of in vitro circularization conditions with uracil-containing stem loop adapters and a PCR amplicon.

Qiaxcel capillary electrophoretic traces of intramolecular ligation, exonuclease treatment, and restriction enzyme digestion. The observed
electrophoretic mobility shift is consistent with circularization. An exonuclease-resistant population of circular DNA molecules is observed after
Plasmid-Safe treatment. Digestion with BamHI restriction enzyme linearizes the circularized DNA and results in the expected shift in mobility.
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Supplementary Figure 4

Comparison of CIRCLE-seq and covalently closed linear stem-loop strategies for identifying nuclease-induced off-target effects.

(a) Scatterplot of read counts for linear stem-loop and circular (CIRCLE-seq) methods for detecting Cas9 nuclease-induced off-target sites for a
sgRNA targeted against VEGFA site 1. (b) Venn diagram showing overlap of sites detected by CIRCLE-seq and alternative linear stem-loop

method.
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Supplementary Figure 5
CIRCLE-seq read counts are highly reproducible.

Scatterplots of CIRCLE-seq read counts between two independent CIRCLE-seq libraries prepared from the same source of genomic DNA (human
U20S cells) for sgRNAs targeted against EMXT and VEGFA site 1.
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Supplementary Figure 6

Comparison of CIRCLE-seq with Digenome-seq.

(a) Venn diagram showing intersections of off-target sites of Cas9 and a sgRNA targeted against the HBB gene detected by CIRCLE-seq (blue) and
Digenome-seq (clear). (b) CIRCLE-seq reads observed at 3 sites that are called by Digenome-seq but not CIRCLE-seq. Integrated Genome Viewer
(IGV) plots showing supporting CIRCLE-seq read alignments mapped to human reference genome (GrCh37). Reads mapping to the reverse
strand are colored in blue, reads mapping to the forward strand are colored in red. (c) Barplot of Digenome-seq start mapping read counts at off-
target cleavage positions identified by CIRCLE-seq but not called by Digenome-seq for nuclease-treated (red) and control (blue) HAP1 genomic
DNA. (d) Plots comparing mapping of sequencing reads for CIRCLE-seq and Digenome-seq at the on-target site of a sgRNA targeted to the HBB
locus. Both nuclease-treated and control samples are shown. A thin grey line indicates expected cleavage site position; read coverage for
forward reads is colored in red, and reverse reads in blue. (e) CIRCLE-seq start mapping position plot at the on-target site for the HBB sgRNA used
in (c). (+) strand mapping reads are colored in blue, (-) strand mapping reads are colored in green.
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Supplementary Figure 7

Histogram of number of mismatches for CIRCLE-seq off-target sites.

Number of mismatches in CIRCLE-seq detected off-target sites relative to the intended target site of SgRNAs targeted against standard
sites in HEK293 & U20S cells, repetitive sites in HEK293 & U20S cells, and sites in K562 cells.
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Supplementary Figure 8

Venn diagrams showing intersection of CIRCLE-seq and GUIDE-seq detected genomic off-target cleavage sites.

CIRCLE-seq sites are indicated in blue and GUIDE-seq sites with clear circles. The top six comparisons are for sgRNAs targeted against standard
genomic sites, and the bottom four comparison are targeted against more repetitive sites.
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Supplementary Figure 9
Venn diagrams showing overlap between sets of off-target cleavage sites detected between CIRCLE-seq, GUIDE-seq, and HTGTS.

CIRCLE-seq (solid blue) detects virtually all off-target cleavage sites detected by both GUIDE-seq (hatched blue) and HTGTS (clear).

Nature Methods: doi:10.1038/nmeth.4278



Comparison of Normalized Read Counts: CIRCLEseq vs GUIDEseq
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Supplementary Figure 10
CIRCLE-seq read count percentile vs. GUIDE-seq read count.

Normalized GUIDE-seq read counts plotted against normalized CIRCLE-seq reads grouped by mismatch numbers between 0 and 6.
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Supplementary Figure 11
CIRCLE-seq sites detected by reference-free site discovery algorithm.

Percentage of unique cleavage sites that can be found using a reference-independent site discovery algorithm, for CIRCLE-seq
experiments performed with sgRNAs targeting non-repetitive sites in HEK293 (red), K562 (green), and U20S genomic DNA (blue).
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Supplementary Figure 12
Effects of titrating Cas9 protein concentration on in vitro cleavage efficiency and number of CIRCLE-seq sites detected.

(a) Barplot of percent in vitro cleavage of a targetsite containing PCR amplicon by Cas9 at different concentrations. (b) Number of sites detected
by CIRCLE-seq at different concentrations of Cas9:sgRNA complex. Validated sites include both those detected by GUIDE-seq and by
confirmatory targeted tag sequencing.
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Supplementary Note 1

Optimization of CIRCLE-seq

To achieve restriction-enzyme independent circularization of genomic DNA, we tested a strategy
based on ligation of an uracil-containing stem loop adapter to an end-repaired, A-tailed PCR
amplicon. We enzymatically selected for covalently-closed DNA molecules that had stem-loop
adapters ligated to both sides with a mixture of Lambda exonuclease and E. coli exonuclease I. 4
bp overhangs were released using a mixture of USER enzyme and T4 PNK, ligation was performed
with T4 DNA ligase under conditions favoring intramolecular ligation, and successful
circularization was measured by capillary electrophoresis (Supplementary Fig. 3). The conditions
resulting in highest circularization efficiency (400 U T4 DNA ligase, 2.5 ng/ul DNA concentration)
were used for circularization in all subsequent CIRCLE-seq experiments.

To determine which concentration of Cas9 ribonucleoprotein complex could fully cleave a PCR
amplicon containing the corresponding gRNA target site in vitro, we performed in vitro cleavage
assays at varying RNP concentrations. We found that near-complete cleavage of the target
amplicon was achieved only with the highest concentration (90 nM Cas9, 9 nM DNA)
(Supplementary Fig. 12).

We subsequently conducted CIRCLE-seq on two target sites at 4 protein concentrations and
found that CIRCLE-seq remains sensitive even with these lower concentrations of nuclease,
though the total number of off-target sites is reduced. However, one off-target site previously
detected by GUIDE-seq was not identified in these lower concentration experiments, suggesting

that CIRCLE-seq at the higher protein concentration is likely to yield the most comprehensive



results (Supplementary Fig. 12). This 10:1 RNP:DNA ratio was used for all other CIRCLE-seq
experiments described.

To characterize the technical reproducibility of CIRCLE-seq, we performed independent library
preparations from the same source of U20S genomic DNA. We observed strong CIRCLE-seq read

count correlations in independent technical replicates (Supplementary Fig. 4).

CIRCLE-seq on Repetitive Target Sites

To provide a more challenging test of CIRCLE-seq, we also profiled SpCas9 with four additional
gRNAs targeted to repetitive sequences that had also been previously characterized by GUIDE-
seq. Due to the repetitive nature of their targets, these four gRNAs have a relatively larger
number of closely matched sites in the human genome (Supplementary Table 1) and, not
unsurprisingly, have had been shown by GUIDE-seq to induce a large number of off-target effects
in human cells®. As expected, CIRCLE-seq also identified a much larger number of off-target sites,
ranging in number from 496 to 2503 for each of the four gRNAs (Supplementary Table 2) and
distributed throughout the human genome. Included among these were 353 of the 364 off-target
sites previously identified by GUIDE-seq experiments (Supplementary Fig. 8). For 9 of the 11 sites
found by GUIDE-seq but not identified by CIRCLE-seq, evidence of supporting reads could be
found in the CIRCLE-seq data but not of a sufficiently high number to meet our statistical
threshold, once again suggesting that greater sequencing read depth should would enable

detection of these sites.



Supplementary Note 2. Visualization of off-target sites detected by CIRCLE-seq.

The intended target site sequence is on top. Off-target sites are ordered by CIRCLE-seq read
count, matches to the intended target sequence are indicated with a dot and mismatches with
colored nucleotides.
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Supplementary Table 1. Table of numbers of in silico off-target sites predicted in

the human genome.

Target Site Sequence Targetsite 01 2 3 4 5 6 7 8
GAGTCCGAGCAGAAGAAGAANGG EMX1 11 2 27 421 4313 34761 218047 1156729
GGAATCCCTTCTGCAGCACCNGG FANCF 11 3 33 449 3155 21793 135144 724696
GTCATCTTAGTCATTACCTGNGG RNF2 11 1 11 204 2029 18023 138077 830825
GGGAAAGACCCAGCATCCGTNGG Site_1 11 2 14 132 1499 13410 99120 627262
GAACACAAAGCATAGACTGCNGG Site_2 11 2 16 239 3075 27129 180822 1026201
GGCCCAGACTGAGCACGTGANGG Site_3 11 2 16 156 1831 15689 112679 645364
GGCACTGCGGCTGGAGGTGGNGG Site_4 1 1 10 125 1231 9452 56139 297118 1471381
GGGTGGGGGGAGTTTGCTCCNGG VEGFA_site_.1 1 2 6 51 442 3870 28723 178630 929570
GACCCCCTCCACCCCGCCTCNGG VEGFA_site_.2 1 1 10 58 726 7636 51673 305299 1469770
GGTGAGTGAGTGTGTGCGTGNGG  VEGFA_site_.3 1 2 37 1077 24857 530932 921004 1538579 2944099



Supplementary Table 2. List of all CIRCLE-seq detected off-target sites.

See attached file.



Supplementary Table 3. List of CIRCLE-seq read counts and HTGTS scores for
off-target sites detected for Cas9 and gRNAs targeted against EMX7 and VEGFA
site 1.

See attached file.



Supplementary Table 4. Deep sequencing read counts for targeted tag integration
sequencing of off-target cleavage sites of Cas9 and gRNAs targeted against
EMX1 and VEGFA site 1.

See attached file.



Supplementary Table 5. Listing of cell-type specific SNPs in protospacer or PAM
of off-target cleavage sites detected by CIRCLE-seq.

See attached file.



Supplementary Table 6. Primers used in target tag integration sequencing.

See attached file.



