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SUPPLEMENTARY Note 1 

In-cell 5’ UTR sequence selection to determine rules of efficient translation initiation 

Beyond  comparing  full  UTR  and  CDS  regions,  we  further  sought  to  select  for  an  optimally 

translating  5’  UTR  sequence  in  an  unbiased  fashion  from  a  complex  sequence  library 

(Supplementary Fig. 2). Similar to sequence selection by enrichment through direct binding90 

previously performed for mRNA-stabilizing 3’ UTR sequences19, we selected for highly translating 

transcripts by transfecting an mRNA reporter library with varying 5’ UTR sequences and harvesting 

mRNAs associated with heavy polysomes (Supplementary Fig. 2a). We further enriched these 

libraries for highly translating transcripts over a total of five rounds of selection and re-transfection 

of the heavily ribosome loaded mRNAs from two independent starting pools (Supplementary Fig. 
2a,  b).  We  chose  to  perform  two  independent  replicates  at  each  step  because  the  library 

complexity is greater than the sequencing depth. We compared them to input sequences of the 

initial  and  fifth  selection  round  by  RNA-seq.  Using  the  hHBB  5’  UTR  as  our  baseline 

(Supplementary Fig. 2a), our 5’ UTR library design used the first 29 nt of the hHBB 5’ UTR 

followed by a 35 nt stretch of random sequences (N35, N=A,C,T,G), which was generated using 

degenerate oligonucleotide primers, and the consensus Kozak sequence (GCCACCAUGG)91,92 

upstream of the Nluc ORF for a total 70 nt-long 5’ UTR. 

First, we asked whether 5’ UTRs selected to be polysome-associated would increase the 

protein output compared to hHBB. We chose candidate 5’ UTRs in which we observed high read 

counts in the final round (≥15 reads), increasing representation across all selection rounds 

(FDR≤0.1), and >2-fold enrichment in the last round of selection compared to its input 

(Supplementary Fig. 2c) and performed luciferase reporter assays with these mRNAs 

(Supplementary Fig. 2d). Beside a wide range of luciferase activity driven by candidate 5’ UTR 

mRNAs, we surprisingly observed that none demonstrated luciferase activity that was significantly 

higher compared to hHBB 5’ UTR. Thus, although we are selecting for 5’ UTR reporter mRNAs of 

highest ribosome load, this unexpectedly decreases total protein output, which suggests the 

selected 5’ UTRs may have also impacted mRNA stability or translation elongation kinetics; a 

similar tradeoff is reported in the PERSIST-seq measurements described in the main text (Fig. 2). 
 To determine common features among the selected 5’ UTR sequences, we calculated 

position-specific short k-mer enrichment across the N35 region using kpLogo93 (Supplementary 
Fig. 2e). We observed stronger enrichment/depletion of specific k-mers (165,611 k-mers tested in 

total) towards the 5’ and 3’ ends of the N35 stretch (Supplementary Fig. 2e). In a confirmatory 

observation expected from the ribosome scanning model of translation initiation, AUG triplets are 



significantly depleted across the N35 region (Supplementary Fig. 2f). This effect is periodic and 

specific to two out-of-frame (frames 1 and 2) AUGs while in-frame AUG (frame 0) is not strongly 

affected, suggesting the negative impact of the competing upstream start codon except when it is 

in-frame to result in an N-terminally extended ORF and protein product. A variety of other 

interesting motifs are further observed, such as the depletion of guanine repeats (for example 

depletion of GGGG or GGG at the 3’ end of the N35, close to the fixed Kozak consensus) and 

uridine repeats throughout the 5’ UTR and enrichment of specific k-mers that suggest formation of 

short stem-loop structures promoting translation (Supplementary Data 3). The latter is especially 

striking: for example, the 6-mer GUGAAC is strongly enriched towards the 5’ positions of the 

variable N35-mer region; GUGAAC is reverse complement to the last 6 nucleotides of the fixed 

HBB-29 region (GUUCAC), which would therefore be able to perfectly base-pair with each other 

and comprises an inverted repeat (Supplementary Fig. 1g). The enrichment of the 6-mer peaks 

at the 4th to 6th nucleotide position downstream of the HBB-29 region, thus favoring an intervening 

length of 3 nt that would allow a 3-nt loop to form after base-pairing with the 6-mer stretches. 

Examining other possible inverted repeat k-mers in the variable region as 6-mer reverse 

complements sliding along the fixed region, we find that the stem may be formed up to around 

position -30 to the AUG. Such a pattern indicates that folding of a small stem-loop in the middle of 

the 5’ UTR under selection may actually be favored in mRNAs with heavy polysome load. This 

finding is in contrast to the typical expectations for secondary structures in 5’ UTRs to generally 

repress translation initiation. This finding is interesting because some synthetic small 5’ UTR RNA 

hairpins have previously been found to improve protein expression94. In sum, our sequence 

selection strategy formalizes previously predicted rules for 5’ UTR sequences that optimize 

ribosome load, and motivates an integrated approach to optimization of protein expression that 

jointly leverages our ribosome load dataset (Fig. 1) in parallel with our study of in-cell mRNA 

stability (Fig. 2). 
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Supplementary Figure 1. mRNA reporter design and in-cell and in-solution workflows with 
in-cell polysome validation. 
(a) Schematic for the 3’ UTR-barcoded mRNA reporter used to screen mRNA performance in a 
pooled format. The constant regions and barcode, which flank a variable 3’ UTR, were instrumental 
for amplifying and identifying hundreds of constructs simultaneously in each of the pooled 
experiments that comprise PERSIST-seq. The DNA templates for full-length mRNAs were 
synthesized on the Codex platform and amplified in a pooled PCR using primers complementary 
to the constant region (T7 promoter) preceding the variable 5’ UTR, and to the ‘constant3’ region 
following the variable 3’ UTR. 
(b) Summary of the workflow to progress from the individually synthesized DNA templates to the 
in vitro synthesized mRNA pool of 233 different constructs. We then use the same mRNA pool to 
screen mRNA performance in a three-pronged set of in-cell and in-solution expression and stability 
analyses. 
(c) Quality control of the 233-mRNA pool on a 1.2% formaldehyde (FA) gel stained with ethidium 
bromide (EtBr) after 3 hrs of in vitro transcription (IVT). The mRNA pool was analyzed before and 
after capping and polyadenylation. Pooled IVT is equally efficient with the starting template DNA 
pool with or without PCR-amplification of the DNA template pool. The three major bands 
corresponding to the three CDS types are indicated. The RiboRuler High Range RNA ladder 
(Thermo Fisher) is loaded for reference. This result has been repeated independently 3 times with 
similar results. 
(d) Polysome fractionation analysis of a transfected mRNA reporter. As an example, the 
distribution of an mRNA with short scrambled 5’ and 3’ UTRs 6 hours after transfection into 
HEK293T cells was compared to the distribution of endogenous human ActB mRNA. RNA was 
extracted from fractions and quantified by qPCR with an RNA spike-in for normalization. Values 
are plotted as mRNA normalized per fraction. Normalized mRNA in fraction ± SD, n = 3 biologically 
independent samples.  
(e) In-solution RNA degradation strategy of barcoded mRNAs containing CDS variants with hHBB 
5’ and 3’ UTRs. The differential degradation of CDS variants depends on their individual CDS 
structures. mRNA pools are degraded in solution by nucleophilic attack (red circle). After 
degradation, RT-PCR is performed to selectively amplify mRNAs that remain intact along their full 
length. Then, the barcode regions of these full-length mRNAs are PCR-amplified, adaptor-ligated, 
and prepared for Illumina sequencing. 
(f) Relative normalized abundance of the mRNAs in the 233x library across fractions after sucrose 
gradient fractionation and RNA sequencing. Normalization and % mRNA per construct and 
fractions eliminates any construct-specific RT bias. 
(g) Relative normalized log mRNA abundance of the mRNAs in the 233x library across time points 
after transfection. Decay curves were fitted assuming a first degree degradation rate. 
Normalization and log mRNA per construct and time point eliminates any construct-specific RT 
bias. 
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Supplementary Figure 2. Sequential selection of high ribosome loaded mRNAs uncovers 5’ 
UTR sequences that contribute to protein abundance. 
(a) Overview of the in-cell selection assay designed to uncover 5’ UTR sequences that contribute 
to translational efficiency. First 29 nt of the human HBB 5’ UTR was chosen as the fixed 5’ region 
followed by the 35 nt long degenerate region and a constant Kozak consensus sequence 
(GCCACC). Selection of the variable 35 nt region is introduced by subsequent re-transfection of 
only the mRNAs purified from the heavy polysomal fractions. 
(b) Denaturing urea-polyacrylamide gel for the quality control of the in vitro transcribed mRNA 5’ 
UTR selection library before and after the 5’ cap and polyA-tail, shown for the selection round 0. 
All consecutive selection rounds yielded similar libraries. The Low Range ssRNA Ladder (NEB) 
was loaded for reference. The gel was stained with SYBR Gold (Thermo Fisher). This result has 
been repeated independently >3 times with similar results. 
(c) Normalized reads per million (RPM) of the top 5’ UTR sequences (FDR≤0.1) over the course 
of the selection rounds. Colored lines indicate mRNAs that were chosen for luciferase reporter 
assays (15 in total from two independent starting pools; ≥15 final round read count, ≥2-fold final 
round enrichment over input). 
(d) Normalized Nluc/Fluc luciferase activities of the top 15 mRNAs from (c). The 35-nt variable 
region in the 5’ UTR of the polysome selected mRNAs are listed along the y-axis. Their luciferase 
activity is plotted on the x-axis relative to hHBB. HBB-29 contains only the first 29 nt of the hHBB 
5’ UTR.  Bars indicate the geometric mean of Nluc/Fluc reporter activity ratios normalized to hHBB 
UTR. Error bars indicate geometric standard deviation. n = 4 biologically independent samples. 
(e) Boxplot of log2 odds ratios of k-mers (2≤k≤6) between the final polysome selection round and 
the initial starting pool. Box hinges: 25% quantile, median, 75% quantile, respectively, from bottom 
to top. Whiskers: lower or upper hinge ±1.5 x interquartile range. Higher variations are observed 
towards either 5’/3’ ends of the 35 nt variable region. Most of the significant k-mers in the 3’ 
positions are depletions. 
(f) Depletion of out-of-frame (+1- and +2-frames) AUGs within the 35 nt variable region following 
the polysome selection rounds. In-frame AUGs (0-frame) are weakly depleted or even show minor 
enrichment closer to the 3’ end. 
(g) Enrichment of the 6-mer motif GUGAAC following polysome selection. GUGAAC is reverse 
complementary to the 3’ end of the fixed 29-nt region of the 5’ UTR (GUUCAC). The enrichment 
towards the 5’ end of the variable region and its peak at the 4th to 6th nucleotides downstream of 
the end of the fixed region may indicate favorability of small stem loop structure for increased 
ribosome loading. 
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Supplementary Figure 3. Correlations of ribosome load, monosome/pre-polysome and 
polysome/monosome with in-cell mRNA half-life. 
Correlation between in-cell half-life and mean ribosome load across the entire polysome profile 
(a), monosome-to-free 80S subunit ratio (b), or polysome-to-monosome ratio (c) in HEK293T cells 
for individual variant groups. Corresponds to Fig. 2b.  
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Supplementary Figure 4. Correlations of ribosome load and in-cell mRNA half-life with 
luciferase expression. 
(a) CAI and GC correlations with ribosome loads of Nluc CDS variants. 
(b) Correlation of luciferase with half-life or ribosome loads at each time points. 
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Supplementary Figure 5. Chemical structure probing of Yellowstone and LinearDesign-1 
RNAs. 
(a) SHAPE and DMS reactivity per sequence position of Yellowstone and LinearDesign-1.  
(b) MFE structures derived using SHAPE reactivity.  
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Supplementary Figure 6. Side-by-side comparison of RNA in-line degradation. 
Side-by-side comparison of RNA in-line degradation from (a) capillary electrophoresis and (b) In-
line-seq. Coloring was normalized between the 5th and 95th percentile for both data types. 
Structure is the predicted MFE structure from ViennaRNA. 
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Supplementary Figure 7. Features of RNA degradation as determined by In-line-seq. 
(a) Correlation of in-line degradation rates per construct at pH 10, 25˚C, [Mg2+] = 10 mM, 1 day 
conditions, to SHAPE reactivity and other in-line degradation conditions tested. 
(b) Dynamic range of average reactivity for hairpin loop degradation for in-line degradation at pH 
10, 25˚C, [Mg2+] = 10 mM, 1 day conditions. Normalized motif degradation ± SD, n = 1 biologically 
independent sample. Box hinges: 25% quantile, median, 75% quantile, respectively, from left to 
right. Whiskers: lower or upper hinge ±1.5 x interquartile range. 
(c) Sequence/location dependency of triloop reactivity and degradation for other three 
experimental in-line degradation conditions tested (see Fig. 3c). 
(d) In-line degradation for 8 constructs measured one-by-one with capillary electrophoresis, in 
absence and presence of pseudouridine. Left panel depicts nucleotides predicted to be unpaired, 
right panel depicts nucleotides predicted to be paired in ViennaRNA structure. In-line degradation 
± SD, n = 1 biologically independent samples. Box hinges: 25% quantile, median, 75% quantile, 
respectively, from left to right. Whiskers: lower or upper hinge ±1.5 x interquartile range. 
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Supplementary Figure 8. Correlation between the 233-mRNA pool in-solution half-life and 
predictors for RNA degradation. 
(a) Correlation between in-vitro half-lives and dG(MFE), Sum p(unpaired) calculated in ViennaRNA 
and EternaFold, and DegScore across all model mRNA types tested. mRNA half-life (hrs) ± SD, n 
= 3 biologically independent samples. Significance test for Spearman correlation value is two-sided 
p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated, n = 
192. dG(MFE)/N: Free energy of minimum free energy structure divided by length. Sum 
p(unpaired): Sum of unpaired probability.  
(b) Correlation between in-vitro half-lives, normalized to RNA length, and dG(MFE), Average 
p(unpaired) (AUP) in ViennaRNA and EternaFold, and DegScore across the Nanoluciferase and 
eGFP constructs. Nucleotide averaged half-life (hrs) ± SD, n = 3 biologically independent samples. 
Significance test for Spearman correlation value is two-sided p-value for a hypothesis test whose 
null hypothesis is that two sets of data are uncorrelated, n = 192. dG(MFE)/N: Free energy of 
minimum free energy structure divided by length. AUP: average unpaired probability, i.e. Sum 
p(unpaired) divided by length. 
(c) One-by-one characterization of in-vitro half-lives of 6 model mRNAs, characterized with U and 
with pseudouridine. mRNA half-life data are presented as mean values ± SD, as estimated from 
one biological experiment via bootstrapped exponential fits as described in Methods.  
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Supplementary Figure 9. Quality control of the workflow of modified RNA synthesis across 
different RNA designs.  
(a) mRNAs of different CDS and 5’/3’UTR combinations designed to test their differential impact 
on protein synthesis. Six CDS constructs were in vitro synthesized with different 5’ and 3’ UTRs. 
Constructs correspond to Fig. 4a. 
(b) Quality control of the individual constructs after PCR amplification (top), in vitro transcription 
(IVT, middle), and after subsequent cap and polyA-tail modification (bottom), as analyzed by 
agarose gel electrophoresis and EtBr staining or Bioanalyzer analysis, respectively. Inclusion of ψ 
in the IVT was tested on six selected constructs. M = molecular weight marker in base-pairs. This 
result has been repeated independently >3 times with similar results. 
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Supplementary Figure 10. Effect of UTR and modified nucleosides on in-solution half-life.  
(a) 6 select CDS designs were combined with three different pairs of 5’ and 3’ UTRs and the in-
solution half-lives were measured. The half-life of ‘Nluc start’ with CoV-2-UUG-UUGfull-dSL1-
3/DEN2 UTRs (red arrow) could not be accurately measured as it was outside the dynamic range 
of the experiment; data represent an upper bound. mRNA half-life data are presented as mean 
values ± SD, as estimated from one biological replicate via bootstrapped exponential fits as 
described in Methods.  
(b) Two model RNAs from Panel A were synthesized with pseudouridine and in-solution half-lives 
were measured. The half-life of “LinearDesign-1” with hHBB/hHBB UTRs containing pseudouridine 
(red arrow) was not accurately captured as this RNA persisted beyond the range of the experiment; 
data reflect an approximate upper bound. mRNA half-life data are presented as mean values ± SD, 
as estimated from one biological replicate via bootstrapped exponential fits as described in 
Methods.  
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Supplementary Figure 11. Overview of predicted RNA secondary structures of constructs 
in Fig. 4c. 
(a) Predicted secondary structures of final tested Nluc constructs, colored by AUP.  
(b) Comparison of secondary structure of starting sequence used for 
RiboTree_LinearDesign_degscoreall_1 and annotations of changes. 
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Supplementary Figure 12. Correlation of experimental data for 24 Nluc constructs to 
predicted degradation and structure metrics.  
Correlation of normalized in-solution half-life, normalized Nluc expression at 6 hours and 24 hours, 
tested for correlation to (a) GC content; (b) CAI; (c) number of hairpins; (d) Maximum ladder 
distance, the maximum length of contiguous helices in the secondary structure; (e) SUP(14 init.), 
the summed unpaired probability of the first 14 nucleotides; (f) dG(MFE); (g), AUP (average 
unpaired probability); (h) DegScore, not modified to account for degradation suppression due to 
pseudouridine. Notably, AUP and dG(MFE) have higher correlation to in-solution half-lives than 
DegScore; this is possibly because the DegScore model was not trained with data on 
pseudouridine. Significance test for Spearman correlation value is two-sided p-value for a 
hypothesis test whose null hypothesis is that two sets of data are uncorrelated, n = 24. Error bars 
indicate standard deviation across n = 3 biologically independent samples for in-solution half-life, 
n = 4 for normalized Nluc expression at 6 and 24 hours.  
 

  



IVT+
cap/

poly(A) M

3000

1.2% FA-agarose, EtBr

Nluc
Fluc

1000
2000

RLT
-10

Ribo
tre

e_
Lin

ea
rD

es
ign

_d
eg

sc
ore

all
_1

Bug
ac

Man
’s_

Lo
st_

LD
+fi

ne
tun

ing
_m

od
_D

eg
-2-

ed

Gen
ew

iz_
1

Nluc
 st

art
 (r

efe
ren

ce
)

HBB-F
luc

HBB-Nluc variant-HBB

Suppl. Figure 13  



Supplementary Figure 13. Qualitative analysis of Nluc constructs for Polyplex 
complexation. 
Quality control of the mRNA Nluc designs used for Polyplex complexation and mRNA stability and 
expression analysis. mRNA was analyzed on a 1.2% formaldehyde (FA) gel stained with ethidium 
bromide (EtBr) after in vitro transcription (IVT) and capping and polyadenylation. The RiboRuler 
High Range RNA ladder (Thermo Fisher) is loaded for reference; molecular weight given in base-
pairs. This result has been repeated independently >3 times with similar results. 
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